
PHYS 705: Classical Mechanics
Canonical Transformation

1



Canonical Variables and Hamiltonian Formalism

 are independent variables in phase space on equal footing

As we have seen, in the Hamiltonian Formulation of Mechanics,

j j
j j

H H
q and p

p q

 
  
 

 

- As long as the new variables formally satisfy this abstract structure (the 

form of the Hamilton’s Equations.

,j jq p

 The Hamilton’s Equation for              are “symmetric” (symplectic, later),j jq p

 This elegant formal structure of mechanics affords us the freedom in 

selecting other (may be better) canonical variables as our phase space 

“coordinates” and “momenta”

2



Canonical Transformation

Recall (from hw) that the Euler-Lagrange Equation is invariant for a point 

transformation:

Now, the idea is to find a generalized (canonical) transformation in phase 

space (not config. space) such that the Hamilton’s Equations are invariant !

( , )j jQ Q q t

i.e., if we have,  0,
j j

L d L

q dt q

  
     

then, 0,
j j

L d L

Q dt Q

  
     



( , , )

( , , )

j j

j j

Q Q q p t

P P q p t





(In general, we look for 
transformations which 
are invertible.)
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Invariance of EL equation for Point Transformation

Given:

From the inverse point transformation equation                           , we have,

( , )j jQ Q q tand a point transformation:0,
j j

d L L

dt q q

  
     

Formally, calculate: i i

i ij i j i j

q qL L L

Q q Q q Q

   
 

      


i ij

i

i i

i

j j

q

Q

qL L

Q

L

Q q q

  
 

  




  



(chain rule)

( , )i iq q Q t

0i

j

q

Q




 and i

j

i

j

q

QQ

q



 



i i
i k

k k

q q
q Q

Q t

 
 

  

First look at the situation in config.  space first: 

 Need to show: 0
j j

d L L

dt Q Q

  
     


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Invariance of EL equation for Point Transformation

Forming the LHS of EL equation with       : 
j j

d L L
LHS

dt Q Q

  
     



i i i

i i ii j i j i j

d

dt

q q qL L L
LHS

q Q q Q q Q

                
   

 

jQ

i i

i i ii j i j

i i

i j i j

q qL d d L

q dt Q dt

q qL L

q Q q Qq Q

     
        

     
 

      
   




i i

i i i ii

i

jj j

i

j

L L

q

q qd L L d

dt q q dt Q

q q

Q Q q Q

                              

 
 


  

 
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Invariance of EL equation for Point Transformation

i

i i

i i

i

i j jj

q qd L L d
LHS

dt q q

L

Qq d Q

q

tQ




                                   

 




0
(Since that’s what given !)

0

i i

j j

i i

j j

dq q

Q dt Q

q q

Q Q


 
 

 
  
 



 

(exchange order of diff)

0LHS  0
j j

d L L

dt Q Q

  
     


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Canonical Transformation

Now, back to phase space with q’s & p’s, we need to find the appropriate 

(canonical) transformation 

with which the Hamilton’s Equations are satisfied:

such that there exist a transformed Hamiltonian 

( , , ) and ( , , )j j j jQ Q q p t P P q p t 

( , , )K Q P t

j j
j j

K K
Q and P

P Q

 
  
 

 

(The form of the EOM must be invariant in the new coordinates.)

** It is important to further stated that the transformation considered 

must also be problem-independent meaning that              must be canonical 

coordinates for all system with the same number of dofs.

( , )Q P
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Canonical Transformation

To see what this condition might say about our canonical transformation, 

we need to go back to the Hamilton’s Principle:

Hamilton’s Principle: The motion of the system in configuration space is 

such that the action I has a stationary value for the actual path, .i.e.,

2

1

0
t

t

I Ldt  

Now, we need to extend this to the 2n-dimensional phase space

1. The integrant in the action integral must now be a function of the 

independent conjugate variable             and their derivatives

2. We will consider variations in all 2n phase space coordinates

,j jq p ,j jq p 
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Hamilton’s Principle in Phase Space

1. To rewrite the integrant in terms of                        , we will utilize the 

definition for the Hamiltonian (or the inverse Legendre Transform): 

2 2

1 1

( , , ) 0
t t

j j

t t

I L dt p q H q p t dt          

Substituting this into our variation equation, we have

2. The variations are now for n and n : (all q’s and p’s are independent)'jq s

, , ,j j j jq p q p 

( , , )j j j jH p q L L p q H q p t      (Einstein’s sum rule) 

'jp s

again, we will required the variations for the       to be zero at endsjq

The rewritten integrant                                                            is formally a 

function of                         but in fact it does not depend on     , i.e.                  

This fact will proved to be useful later on.                      

( , , ) ( , , )j jq q p p q H q p t   
, , ,j j j jq p q p  jp 0jp  

9



Hamilton’s Principle in Phase Space
Affecting the variations on all 2n variables             , we have,,j jq p

'jp s

2

1

0

t

j j

j j j

t

j j

j j j

q qI
d d d

q q

p p
d d dt

p p

  
  

 
 

               

             














'jq s

As in previous discussion, the second term in the sum for             can be 

rewritten using integration by parts:  

'jq s

22
2

1
1 1

tt t

j j j

j j jt
t t

q q q d
dt dt

q q dt q  
     

          


  


  

0

0

j j j

j j j

q q

p p





 

 
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Hamilton’s Principle in Phase Space
 Previously, we have required the variations for the       to be zero at end ptsjq

So, the first sum with            can be written as:'jq s

1 2,

0j

t t t

q








so that,

2

1

where

t

j
j j

j j j

t

qd
q dt q d

q dt q
  



    
          




 

2

1

t

j j

j j j

t

q q d
d d dt

q dt q
 

 

    
         




 

2
2

1
1

t t

j j

j j t
t

q q
dt

q q 
  


   






 

2

1

t

j

j
t

q d
dt

dt q
  

     



 
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 Note, since                        ,                               without enforcing the

Hamilton’s Principle in Phase Space
'jp sNow, perform the same integration by parts to the corresponding term for 

jp

0jp  
2

1

0

t

j

j t

p

p 



 

we have,

2

1

where

t

j
j j

j j j

t

pd
p dt p d

p dt p
  



    
         




 

22
2

1
1 1

tt t

j j j

j j jt
t t

p p p d
dt dt

p p dt p  
     

          


  


  

variations for       to be zero at end points. 

This gives the result for the 2nd sum in the variation equation for            :'jp s
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Hamilton’s Principle in Phase Space
Putting both terms back together, we have:

2

1

0

t

j j
j jj j j j

t

I d d
d q p dt

q dt q p dt p
  



                                         





  

1 2

Since both variations are independent,        and         must vanish independently !21

1 0
j j

d

dt q q

  
     

0j
j

H
p

q

 
   

  


( , , ) ( , , )j jq q p p q H q p t   

andj
j j j

H
p

q q q

  
   

  

j
j

H
p

q


 


 (one of the Hamilton’s 

equations)
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Hamilton’s Principle in Phase Space

2

1

0

t

j j
j jj j j j

t

I d d
d q p dt

q dt q p dt p
  



                                         





  

1 2

2 0
j j

d

dt p p

  
     

0 0j
j

H
q

p

 
   

  


( , , ) ( , , )j jq q p p q H q p t   

0 and j
j j j

H
q

p p p

  
   

  




j
j

H
q

p





 (2nd Hamilton’s 
equations)
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Hamilton’s Principle in Phase Space

So, we have just shown that applying the Hamilton’s Principle in Phase 

Space, the resulting dynamical equation is the Hamilton’s Equations.

15

j
j

H
p

q


 




j
j

H
q

p









Hamilton’s Principle in Phase Space
Notice that a full time derivative of an arbitrary function F of                  can 

be put into the integrand of the action integral without affecting the 

variations: 

Thus, when variation is taken, this constant term will not contribute !

( , , )q p t

2

1

( , , )

t

j j

t

dF
p q H q p t dt

dt
    







2
2

1
1

( , , )

t
t

j j

t
t

dF
p q H q p t dt dt

dt
    


 

2

2

1

1

t
t

t
t

constdF F  
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Canonical Transformation
Now , we come back to the question:  When is a transformation to           

canonical?

,Q P

( , , ) 0j jp q H q p t dt     

This means that we need to have the following variational conditions:

We need Hamilton’s Equations to hold in both systems

( , , ) 0j jPQ K Q P t dt     AND

 For this to be true simultaneously, the integrands must equal

 And, from our previous slide, this is also true if they are differed by 

a full time derivative of a function of any of the phase space variables 

involved + time:

 ( , , ) ( , , ) , , , ,j j j j

dF
p q H q p t PQ K Q P t q p Q P t

dt
   
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Canonical Transformation

F is called the Generating Function for the canonical 

transformation:

 As the name implies, different choice of F give us the ability to 

generate different Canonical Transformation to get to different 

 ( , , ) ( , , ) , , , , (*) ( 9.11)j j j j

dF
p q H q p t PQ K Q P t q p Q P t G

dt
   

( , , )

( , , )
j j

j j

Q Q q p t

P P q p t


 

18

 ( , ) , :j j j jq p Q P

 ,j jQ P

 F is useful in specifying the exact form of the transformation if it 

contains half of the old variables and half of the new variables.  It, 

then, acts as a bridge between the two sets of canonical variables.



Canonical Transformation

 Depending on the form of the generating functions (which pair of 

canonical variables being considered as the independent variables for 

the Generating Function), we can classify canonical transformations 

into four basic types.

F is called the Generating Function for the canonical 

transformation:

 ( , , ) ( , , ) , , , , ( 9.11)(*)j j j j

dF
p q H q p t PQ K Q P t q p Q P t G

dt
   

( , , )

( , , )
j j

j j

Q Q q p t

P P q p t


 

19

 ( , ) , :j j j jq p Q P



Canonical Transformation: 4 Types

 1 , ,j
j

F
p q Q t

q





 1 , ,j
j

F
P q Q t

Q


 


1FK H
t


 



 ( , , ) ( , , ) , ,j j j j

dF
p q H q p t PQ K Q P t old new t

dt
   

Type 1:

 2 , ,j
j

F
p q P t

q





 2 , ,j
j

F
Q q P t

P





2FK H
t


 



1( , , )qF QF t

Type 2:

2 ( , , ) i iF F tq Q PP 

 3 , ,j
j

F
q p Q t

p


 


 3 , ,j

j

F
P p Q t

Q


 


3FK H
t


 


Type 3:

3( , , ) i iF F tp q pQ 

 4 , ,j
j

F
q p P t

p


 


 4 , ,j

j

F
Q p P t

P





4FK H
t


 


Type 4:

4 ( , , ) i i i ipF F t q p PP Q  
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Canonical Transformation: Type 1

Or, we can write the equation in differential form:

Type 1: |  F is a function of q and Q + time 

Writing out the full time derivative for F, Eq (1) becomes:

111
j j jj j

j
j

j

F
H K

t

F
p q q

q

F
PQ Q

Q


  








 

  

1( , , )F F q Q t

(again E’s 
sum rule)

1 1 1 0j
j

j
j

j j

F
dq dQ K H

F
p

q
tP

Q
d

t

F                      









(old) (new)

21

(write out                                                  and multiply the equation by      ), and j j
j j

dq dQ
q Q

dt dt
  dt



Canonical Transformation: Type 1
Since all the              are independent, their coefficients must vanish 

independently.  This gives the following set of equations: 

For a given specific expression for                     , e.g. 

 1 , , ( 1)j
j

F
p q Q t C

q





,j jq Q

 1 , , ( 2)j
j

F
P q Q t C

Q


 


1 ( 3)
F

K H C
t


 



 1 , ,F q Q t  1 , , j jF q Q t q Q

. ( 1)Eq C are n relations defining       in terms of                  and they can 

be inverted to get the 1st set of the canonical transformation:

jp , ,j jq Q t

 1 , ,j j j j
j

F
p q Q t Q Q p

q


   


In the specific example, we have:

22

These are the equations in the Table 9.1 in the book.



Canonical Transformation: Type 1

 1 , ,j j j j
j

F
P q Q t q P q

Q


      



1FK H
t


 


K H 

. ( 2)Eq C are n relations defining        in terms of                  .  Together with 

our results for the       , the 2nd set of the canonical transformation 

can be obtained.

jP , ,j jq Q t

Again, in the specific example, we have:

jQ

. ( 3)Eq C gives the connection between K and H:

(note:                      is a function of the new variables so that the RHS needs 

to be re-express in terms of             using the canonical transformation.)

( , , )K Q P t

,j jQ P

23



Canonical Transformation: Type 1

j jP q 

K H

In summary, for the specific example of a Type 1 generating function:

We have the following:

Note: this example results in basically swapping the generalized coordinates with 

their conjugate momenta in their dynamical role and this exercise demonstrates 

that swapping them basically results in the same situation !

j jQ p

 1 , , j jF q Q t q Q

Canonical Transformation

and Transformed Hamiltonian

 Emphasizing the equal role for q and p in Hamiltonian Formalism !
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Canonical Transformation: Type 2

Substituting into our defining equation for canonical transformation, Eq. (1):

(One can think of as the Legendre transform of in 

exchanging the variables Q and P.)

Type 2: , where F2 is a function of q and P + time 
2 ( , , ) j jF F q t Q PP 

Again, writing the equation in differential form:

2 2 2 0j j j j
j j

F F F
p dq Q dP K H dt

q P t

                          

(old) (new)

2F ( , , )F q Q t

25

j j j j

dF
p q H PQ K

dt
   j j j jp q H PQ   2 2 2

j j j j
j j

F F F
K q P PQ

t q P

  
    

  
 j jPQ 



Canonical Transformation: Type 2
Since all the              are independent, their coefficients must vanish 

independently.  This gives the following set of equations: 

For a given specific expression for                     , e.g. 

 2 , ,j
j

F
p q P t

q





,j jq P

 2 , ,j
j

F
Q q P t

P





2FK H
t


 



 2 , ,F q P t  2 , , j jF q P t q P

 2 , ,j j
j

j j

F
p q P t P

q

P p


 


 

 2 , ,j j
j

j j

F
Q q P t q

P

Q q


 


  K H

Thus, the identity transformation is also a canonical transformation !
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Canonical Transformation: Type 2
Let consider a slightly more general example for type 2: 

Going through the same procedure, we will get:

 2 , , j jF F q P t Q P 

2
j

j

j j
j j

F
p

q

f g
p P

q q





 
  

 
 

2

1, ,

j
j

j n

F
Q

P

Q f q q t





  
j

f g
K H P

t t

 
  

 

Notice that the Q equation is the general point transformation in the 

configuration space.  In order for this to be canonical, the P and H

transformations must be handled carefully (not necessary simple functions).

with      2 1 1, , , , , , , ,n j nF q P t f q q t P g q q t  
where  f and g are function of q’s only + time

27



Canonical Transformation: Summary

(Results are summarized in Table 9.1 on p. 373 in Goldstein .)

The remaining two basic types are Legendre transformation of the remaining 

two variables:

3( , , ) j jF F Q t p pp q q  

Canonical Transformations form a group with the following properties:

4 ( , , ) &j j j jF F t p q Q P q pp P Q P    

1. The identity transformation is canonical (type 2 example)

2. If a transformation is canonical, so is its inverse

3. Two successive canonical transformations (“product”) is canonical

4. The product operation is associative

28



Canonical Transformation: 4 Types

 1 , ,j
j

F
p t

q
q Q





 1 , ,j
j

F
P t

Q
q Q


 


1FK H
t


 



 ( , , ) ( , , ) , ,j j j j

dF
p q H q p t PQ K Q P t old new t

dt
   

( , , )

( , , )

j j

j j

Q Q q p t

P P q p t





Type 1:

 2 , ,j
j

F
p t

q
q P





 2 , ,j
j

F
Q t

P
q P





2FK H
t


 



1( , , )qF QF t

Type 2:

2 ( , , ) i iF F tq Q PP 

 3 , ,j
j

F
q t

p
p Q


 


 3 , ,j

j

F
P t

Q
p Q


 


3FK H
t


 


Type 3:

3( , , ) i iF F tp q pQ 

 4 , ,j
j

F
q t

p
p P


 


 4 , ,j

j

F
Q t

P
p P





4FK H
t


 


Type 4:

4 ( , , ) i i i ipF F t q p PP Q  

varind

vardep
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Canonical Transformation (more)
If we are given a canonical transformation

How do we find the appropriate generating function F ? 

- Let say, we wish to find a generating function of the 1st type, i.e., 

( , , )
(*)

( , , )
j j

j j

Q Q q p t

P P q p t




1( , , )F F q Q t

(Note: generating function of the other types can be obtain through an 

appropriate Legendre transformation.)

- Since our chosen generating function (1st type) depends on q, Q, and t 

explicitly, we will rewrite our p and P in terms of q and Q using Eq. (*): 

( , , )j jp p q Q t ( , , )j jP P q Q t

30



   1 1, , , ,j i

i i j j j j

P F q Q t F q Q t p

q q Q Q q Q

       
                  

Canonical Transformation (more)
Now, from the pair of equations for the Generating Function Derivatives 

(Table 9.1), we form the following diff eqs,

can then be obtained by directly integrating the above equations 

and combining the resulting expressions.

 1 , ,
( , , )j j

j

F q Q t
p p q Q t

q


 



1( , , )F q Q t

 1 , ,
( , , )j j

j

F q Q t
P P q Q t

Q


  



Note:   Taking the respective partials of q and Q of the above equations, 
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Canonical Transformation (more)
Now, from the pair of equations for the Generating Function Derivatives 

(Table 9.1), we form the following diff eqs,

can then be obtained by directly integrating the above equations 

and combining the resulting expressions.

 1 , ,
( , , )j j

j

F q Q t
p p q Q t

q


 



1( , , )F q Q t

 1 , ,
( , , )j j

j

F q Q t
P P q Q t

Q


  



Note:   Since  dF1 is an exact differential wrt q and Q, so the two exps are equal,

2 2
1 1

j

j i

i ji j i

F F

q Q Q

P p

qq Q

 
 

 
 
   

(We will give the full 

list of relations later.)
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Canonical Transformation (more)
Example (G8.2): We are given the following canonical transformation for a 

system with 1 dof:

1( , )F q Q

( , ) cos sin

( , ) sin cos

Q Q q p q p

P P q p q p

 
 

  
  

(Q and P is being rotated in phase space from q and p by an angle )

We seek a generating function of the 1st kind:

(HW: showing this 

trans. is canonical)

33

First, notice that the cross-second derivatives for F1 are equal as required for a 

canonical transformation:

1

s
cot

n insi

1F Q
p q

Q q Q Q 



                   


   

1

s
cot

n insi

1F q
P Q

q Q q q 



                   


   



Canonical Transformation (more)

Now, integrating the two partial differential equations:

 
2

1 cot
sin 2

Qq q
F h Q


   

Comparing these two expression, one possible solution for       is,

 
2

1 cot
sin 2

qQ Q
F g q


   

   2 2
1

1
, cot

sin 2

Qq
F q Q q Q 


   

34

1F

Rewrite the transformation in terms of q and Q (indep. vars of F1 ): 

cos
sin cos

sin sin

Q
q q

 
 

     
 

cot
sin

Q
q 


  

cot
sin

q
Q 


 

1 ( , )
F

p p q Q
q


 


1 ( , )
F

P P q Q
Q


  




Canonical Transformation (more)

As we have discussed previously, we can directly use the fact that F2 is the 

Legendre transform of F1,

1 2 ( , , ) j jF F q P t Q P 

Now, from the CT, we can write Q by q and P (F2 should be in q & P):

35

2 1( , , ) ( , , )F q P t F q Q t QP 

   2 2
2

1
, cot

sin 2

Qq
F q P q Q QP


    

cos sin

sin cos

Q q p

P q p

 
 

 
 

tan
cos

q
Q P 


 

Now, let say we want to fine a Type-2 Generating function                   for this 

problem…

2 ( , , )PF q t



Canonical Transformation (more)

As we have discussed previously, we can directly use the fact that F2 is the 

Legendre transform of F1,

1 2 ( , , ) j jF F q P t Q P 

This then gives:

36

2 1( , , ) ( , , )F q P t F q Q t QP 

   2 2
2

1
, cot

sin 2

Qq
F q P q Q QP


    

 
2

2
2

1
, tan tan cot

sin cos 2 cos

q q q
F q P P P q P  

  
                     

Q



Canonical Transformation (more)

As we have discussed previously, we can directly use the fact that F2 is the 

Legendre transform of F1,

1 2 ( , , ) j jF F q P t Q P 

37

 
2

2
2

1
, tan tan cot

sin cos 2 cos

q q q
F q P P P q P  

  
                     

2
22

tan
cos sin cos

qP q
P 

  
 

2
2 21 2

cot tan
2 cos sin cos

q qP
q P 

  
  

    
  



Canonical Transformation (more)

As we have discussed previously, we can directly use the fact that F2 is the 

Legendre transform of F1,

1 2 ( , , ) j jF F q P t Q P 

38

 
2

2
2

1
, tan tan cot

sin cos 2 cos

q q q
F q P P P q P  

  
                     

2 2

cos sin cos

qP q

  
 2 tanP 

2
21

cot
2 cos sin

q
q 

 


2

cos

qP


 2 tanP 

  
      



Canonical Transformation (more)

As we have discussed previously, we can directly use the fact that F2 is the 

Legendre transform of F1,

1 2 ( , , ) j jF F q P t Q P 

39

 
2

2
2

1
, tan tan cot

sin cos 2 cos

q q q
F q P P P q P  

  
                     

   2 2
2

1
, tan

cos 2

qP
F q P q P 


  Finally, 



Canonical Transformation (more)

Alternatively, we can substitute F into Eq. (*)G9.11 , results in replacing the           

term by              in our condition for a canonical transformation,

2 ( , , ) j jF F q P t Q P 

j jPQ

j jQ P 

j j j j

dF
p q H Q P K

dt
    

Recall, this procedure gives us the two partial derivatives relations for F2:

 2 , ,
j

j

F q P t
p

q






 2 , ,
j

j

F q P t
Q

P






40

[Or, use the Table]



Canonical Transformation (more)

2 ( , , )F q P tTo solve for                       in our example, again, we rewrite our given canonical 

transformation in q and P explicitly.

Integrating and combining give,

( , ) cos sin

( , ) sin cos

Q Q q p q p

P P q p q p

 
 

  
  

tan
cos

P
q 


 

2 ( , )
F

p p q P
q


 

 sin
cos sin

cos cos

P
q q

 
 

    
 
tan

cos

q
P 


 

2 ( , )
F

Q Q q P
P


 



   2 2
2

1
, tan

cos 2

qP
F q P q P 


  

41



Notice that when             , 

Canonical Transformation (more)

0 

so that our coordinate transformation is just the identity 

transformation:               and

sin 0 

Q q P p

p, P CANNOT be written explicitly in terms of q and Q !  

so our assumption for using the type 1 generating function 

(with q and Q as indp var) cannot be fulfilled.  

Consequently,                     blow up and cannot be used to derive the 

canonical transformation: 

   2 2
1

1
, cot as 0

sin 2

Qq
F q Q q Q  


     

 1 ,F q Q

( , ) cos sin

( , ) sin cos

Q Q q p q p

P P q p q p

 
 

  
  

But, using a Type 2 generating function will work.
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Similarly, we can see that when             , 

Canonical Transformation (more)

2

 

our coordinate transformation is a coordinate switch               ,

   2 2
2

1
, tan as 0

cos 2

qP
F q P q P  


    

cos 0 

Q p  P q

p, Q CANNOT be written explicitly in terms of q and P !  

so the assumption for using the type 2 generating function 

(with q and P as indp var) cannot be fulfilled.  

Consequently,                     blow up and cannot be used to derive the 

canonical transformation: 

 2 ,F q P

( , ) cos sin

( , ) sin cos

Q Q q p q p

P P q p q p

 
 

  
  

But, using a Type 1 generating function will work in this case.
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Canonical Transformation (more)

- A suitable generating function doesn’t have to conform to only one of 

the four types for all the degrees of freedom in a given problem !

For a generating function to be useful, it should depends on half of 

the old and half of the new variables

As we have done in the previous example, the procedure in solving  

for F involves integrating the partial derivative relations resulted from 

“consistence” considerations using the main condition for a canonical 

transformation, i.e.,

- There can also be more than one solution for a given CT

( , , ) ( , , ) ( 9.11)j j j j

dF
p q H q p t PQ K Q P t G

dt
   

- First , we need to choose a suitable set of independent variables for the 

generating function.
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Canonical Transformation (more)

For these partial derivative relations to be solvable, one must be 

able to feed-in 2n independent coordinate relations (from the given 

CT) in terms of a chosen set of  ½ new + ½ old variables.

- In general, one can use ANY one of the four types of generating 

functions  for the canonical transformation as long as the RHS of the 

transformation can be written in terms of the associated pairs of phase 

space coordinates: (q, Q, t), (q, P, t), (q, Q, t), or (p, P, t).

- On the other hand, if the transformation is such that the RHS cannot 

written in term of a particular pair: (q, Q, t), (q, P, t), (q, Q, t), or (p, P, t), 

then that associated type of generating functions cannot be used.

1T 2T 3T 4T
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Canonical Transformation: an example with two 
dofs

- As we will see, this will involve a mixture of two different basic types. 

2 2

2 2

(2 )

(2 )

Q p a

P q b


 

- To see in practice how this might work… Let say, we have the following 

transformation involving 2 dofs:

1 1

1 1

(1 )

(1 )

Q q a

P p b




   1 1 2 2 1 1 2 2, , , , , ,q p q p Q P Q P
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- As an alternative, we can try to use the set                           as our independent 

variables.   This will give an F which is a mixture of Type 3 and 1.

Canonical Transformation: an example with two 
dofs

- First, let see if we can use the simplest type (type 1) for both dofs, i.e., F

will depend only  on the q-Q’s: 

1 2 1 2( , , , , )F q q Q Q t

Notice that Eq (1a) is a relation linking             only , they CANNOT 

both be independent variables  Type 1 (only) WON’T work ! 

11 2 2, , ,Qp q Q

1 1,q Q

(In Goldstein (p. 377), another alternative was using                             resulted in a 

different generating function which is a mixture of Type 2 and 1.)

1 2 1 2, , ,q q P Q
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2 2

2 2

(2 )

(2 )

Q p a

P q b


 

1 1

1 1

(1 )

(1 )

Q q a

P p b






Now, with this set of ½ new + ½ old independent variable chosen, we need to 

derive the set of partial derivative conditions by substituting  

Canonical Transformation: an example with two 
dofs

From our CT, we can write down the following relations:

Dependent variables

22P q 

11q Q

1 2 1 2( , , , , )F p q Q Q t

1 2 1 2, , ,p q Q Q
Independent variables

1 2 1 2, , ,q p P P

22p Q

11P p

into  Eq. 9.11 (or look them up from the Table).

(*)
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we will use the following Legendre transformation:

Canonical Transformation: an example with two 
dofs

The explicit independent variables (those appear in the differentials) in Eq. 

9.11 are the q-Q’s.  To do the conversion:  

1 2 1 2 1 1'( , , , , )F F p q Q Q t q p 

2 1 21

1 2 1 2

, , ,

, , ,

q

qp

q Q Q

Q Q


(Eq. 9.11’s explicit ind vars)

(our preferred ind vars)

Substituting this into Eq. 9.11, we have:

1 1p q 2 2 1 1 2 2p q H PQ PQ
dF

dt
K      

1 21 1 2 2 1 2 1 1 1 1
1 2 1 2

' ' ' '
P

F F F F
p q Q Q q p pQ PQ K q

p q Q Q

   
     

  



      'F

t





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2 2 1 1 2 2 1 2 1 2 1 1
1 2 1 2

' ' ' ' 'F F F F F
p q H PQ PQ K p q Q Q q p

p q Q Q t

    
         

    
      

Canonical Transformation: an example with two 
dofs

Comparing terms, we have the following conditions:  

1
1

'F
q

p


 



2
2

'F
p

q





'F
K H

t


 



1
1

'F
P

Q


 



2
2

'F
P

Q


 



As advertised, this is a mixture of Type 3 and 1 of the basic CT.

50

1 1 1
1

12 2 2 2
2

1
21

2 12

'' '''F
p q q

q

F
PQ Q

F
PQ Q

Q

F
p

F
q

Q
pH K

p t


       


 











   



Canonical Transformation: an example with two 
dofs
Substituting our coordinates transformation [Eq. (*)] into the partial 

derivative relations, we have :  

1 1
1

'F
q Q

p


   



2 2
2

'F
p Q

q


 



1 1
1

'F
P p

Q


   



 2 2
2

'F
P q

Q


    



1 1 2 1 2' ( , , )F Q p f q Q Q  

2 2 1 1 2' ( , , )F Q q k p Q Q 

1 1 1 2 2' ( , , )F pQ g p q Q  

2 2 1 2 1' ( , , )F q Q h p q Q 
1 1 2 2'F p Q q Q  

(Note: Choosing                        instead, Goldstein has                                  .  Both 

of these are valid generating functions.) 

11 2 2, , ,Pq q Q 1 1 2 2''F q P q Q 

22P q 

11q Q

22p Q

11P p
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Canonical Transformation: Review

 1 , ,j
j

F
p q Q t

q





 1 , ,j
j

F
P q Q t

Q


 


1FK H
t


 



 ( , , ) ( , , ) , ,j j j j

dF
p q H q p t PQ K Q P t old new t

dt
   

( , , )

( , , )

j j

j j

Q Q q p t

P P q p t





Type 1:

 2 , ,j
j

F
p q P t

q





 2 , ,j
j

F
Q q P t

P





2FK H
t


 



1( , , )F F q Q t

Type 2:

2 ( , , ) i iF F q P t Q P 

 3 , ,j
j

F
q p Q t

p


 


 3 , ,j

j

F
P p Q t

Q


 


3FK H
t


 


Type 3:

3( , , ) i iF F p Q t q p 

 4 , ,j
j

F
q p P t

p


 


 4 , ,j

j

F
Q p P t

P





4FK H
t


 


Type 4:

4 ( , , ) i i i iF F p P t q p Q P  
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Canonical Transformation: Review

- In general, one can use ANY one of the four types of generating 

functions  for the canonical transformation as long as the 

transformation can be written in terms of the associated pairs of phase 

space coordinates: (q, Q, t), (q, P, t), (q, Q, t), or (p, P, t).

- On the other hand, if the transformation is such that  it cannot be written 

in term of a particular pair: (q, Q, t), (q, P, t), (q, Q, t), or (p, P, t), then 

that associated type of generating functions cannot be used.

- Generating function is useful as a bridge to link half of the original set 

of coordinates (either q or p) to another half of the new set (either Q or P).

- the procedure in solving  for F involves integrating the resulting partial 

derivative relations from the CT condition
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